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Abstract. We present a method for the direct computation of the Wigner function by solving
a coupled system of linear partial differential equations in phase space. Our modified spectral
method relies on Chebyshev polynomials. Since this approach allows us to include arbitrary
high orders of partial derivatives, our procedure is applicable to arbitrary binding potentials. We
apply our scheme to Wigner functions of the harmonic oscillator, the Morse oscillator, and an
asymmetric double-well potential.

How do we calculate the Wigner function of a quantum system? Two approaches offer
themselves. The first route utilizes the standard definition [1] of the Wigner function in
terms of the density operator. The second approach [2–6] works directly from phase space
and defines the Wigner function by a set of partial differential equations in phase space
spanned by the position variableq and the momentum variablep. This approach is rarely
used in the literature [2, 3, 5, 7] since in general the equations are of infinite order and so
far no technique to solve these equations has been proposed.

In this letter we present the first approach that solves the phase-space equations for
the Wigner function numerically for an arbitrary one-dimensional binding potential. The
central ingredient of our work is a modified spectral method [8]. We illustrate our results
for energy eigenstates of the harmonic oscillator, the Morse oscillator and an asymmetric
double-well potential. Our procedure may provide new insight into the fascinating properties
of quasiprobability distributions and may become a valuable tool for numerical computations
of the Wigner function. Moreover our approach can be generalized to any similar system
of partial differential equations and to any high-order differential equations.

The Wigner function
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of an energy eigenfunctionψẼ(q) of a one-dimensional potentialU ≡ U(q) arises in
many branches of physics ranging from the foundations of quantum mechanics via atomic
physics, nuclear physics, and quantum optics to plasma physics. For a detailed discussion
of its properties we refer to [9, 10].

[4] has translated the Schrödinger energy eigenvalue problem

− h̄2

2M
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ψẼ(q)+ U(q)ψẼ(q) = ẼψẼ(q) (2)
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into the phase-space language arriving at a system of two real partial differential equations
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and
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These two equations define the Wigner function directly from phase space. HereM and
h̄ denote the mass of the particle in the potential and Planck’s constant, respectively. In
general, these equations are of infinite order inp. However, in the case of a polynomial
potentialU(q) only a finite number of derivatives contribute. Since these equations are
scaled with powers of ¯h one might expect that it is possible to neglect higher-order terms.
However, our numerical results indicate that this is not necessarily the case.

To apply our spectral method it is convenient to map the properly chosen phase-
space domain [−q1 6 q 6 q2] × [−p0 6 p 6 p0] onto the dimensionless square
� ≡ [−1 6 x 6 1] × [−1 6 y 6 1]. This is the range for which the Chebyshev
polynomials used in our spectral ansatz are defined. Apart from some slight changes in the
prefactors, the structure of equations (3) and (4) remains unchanged by this mapping: we
simply replace the position variableq by x and the momentum variablep by y.

We now briefly summarize our strategy to solve the coupled system of partial differential
equations (3) and (4). In this letter we only present the basic ideas of our modified spectral
method and refer to [11, 12] for more details. We note that in general the spectral method
can also treat time-dependent as well as higher-dimensional problems.

To find a non-trivial solution of equations (3) and (4) we require the value of the solution
at some point in the computational domain� to be non-zero. Since the basic equations are
linear, we can select an arbitrary value, e.g. at the origin, and normalize the solution after
the calculation. We approximate the solution of equations (3) and (4) by

9N(x, y) =
Nx∑
j=0

Ny∑
k=0,2,...

aj,kTj (x)Tk(y) (5)

where the Chebyshev polynomialsTj (x) and Tk(y) of order j and k, respectively, serve
as one-dimensional shape functions and the(Nx + 1)(Ny/2+ 1) coefficientsaj,k are to be
determined. [13] discusses the properties of Chebyshev polynomials in great detail. Note
that due to the symmetry relation

9(q,−p) = 9(q, p) (6)

following from equations (3) and (4) only Chebyshev polynomials of even order iny are
used. In our problem, no boundary conditions have to be satisfied by the shape functions.

We substitute our ansatz (5) into the dimensionless form of the differential equations (3)
and (4) and recall that we can express derivatives and products of Chebyshev series arising
from ∂r9/∂yr , y29 etc as Chebyshev series. Their coefficients are related to the original
coefficientsaj,k by recurrence relations[12, 13]. Note that for Chebyshev polynomials these
relations remain simple even for high-order derivatives. It is this property that causes us to
use Chebyshev polynomials rather than some other set of orthogonal polynomials. When
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we treat all the terms appearing in the basic equations in this manner and also express the
potentialU(x) as a Chebyshev series, we end up with the residuals

R` ≡ L`9N ≡
∑
j,k

a
(`)
j,k Tj (x)Tk(y) ` = 1, 2 (7)

whereR1 corresponds to equation (3) andR2 to equation (4). The coefficientsa(`)j,k are

linear combinations ofaj,k and are given explicitly in [11, 12]. We note thata(1)j,2k = 0 and

a
(2)
j,2k+1 = 0 due to the symmetry relation (6).

The residualsR1 andR2 will in general not be zero. Spectral methods determine the
unknown coefficientsaj,k by requiring that the integral of the weighted residual over the
computational domain� vanishes. Moreover, weight and shape functions are chosen from
the same set of orthonormal functions. Hence, when we multiply equation (7) by the
productTν(x)Tµ(y) and the Chebyshev weightχ(x, y) = 1√

1−x2
1√

1−y2
and integrate over

the domain� we arrive at the requirement
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with ν = 0, 1, . . . , Nx andµ = 0, 1, . . . , Ny . Due to the orthogonality relation∫ 1

−1

∫ 1

−1
Tj (x)Tk(y)Tν(x)Tµ(y)χ(x, y)dx dy = constantδjνδkµ (9)

for Chebyshev polynomials only the integrals withj = ν andk = µ give a non-vanishing
contribution in equation (8). We conclude that in order to satisfy equation (8), the prefactors
belonging to the productTν(x)Tµ(y) must be zero. When we express thea(`)j,k by the original
coefficientsaj,k this leads to the homogeneous linear system of equations

0
ν,µ

j,k aj,k = 0 j, ν = 0, 1, . . . , Nx k = 0, 2, . . . , Ny µ = 0, 1, . . . , Ny. (10)

where the coefficients0ν,µj,k are derived explicitly in [12].
The system (10) is overdetermined: there are(Nx +1)(Ny/2+1) unknown coefficients

aj,k, but we have(Nx+1)(Ny+1) equations from the integral relations (8) and one additional
normalization equation (not included in equation (10)) to find a non-trivial solution. We
apply a least-squares method to approximate the solution of equation (10). Thus the
weighted residuals are not exactly zero, but are minimized in the Euclidean norm. Numerical
experiments show that this approach yields solutions of high accuracy for our problem†.
After solving the system (10), we compute the approximation for the Wigner function9N
by substituting the coefficientsaj,k into the ansatz (5).

We now illuminate different aspects of our method by applying it to three different
examples. Throughout we use the dimensionless position variableQ ≡ q/a0, where
a0 is a characteristic length and the dimensionless momentumP ≡ (a0/h̄)p. Note that
it is important to find the balance in order to properly choose a phase-space domain
[−Q1 6 Q 6 Q2] × [−P0 6 P 6 P0], which has to be large enough to resolve all
properties of the Wigner function. However, when the domain is chosen too large we have
to incorporate Chebyshev polynomials of higher order to obtain a certain error bound which
enlarges the linear system of equations (10) and therefore the computational cost.

† For a proof of the convergence of our integration scheme see [11].
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Figure 1. Wigner function (top) and zero phase-space contour lines (bottom) of the 11th energy
eigenstate of the harmonic oscillator.

Table 1. The mean and maximal absolute errors for the Wigner function approximation
equation (5) of the 11th energy eigenstate of the harmonic oscillator depending on the number
N = Nx = Ny of Chebyshev polynomials in our ansatz. For the definition of these errors see
the footnote.

N Mean absolute error Maximal absolute error
50 3.4× 10+1 2.1× 10+4

60 4.8× 10−2 3.0× 10+1

70 1.1× 10−6 6.6× 10−4

80 7.5× 10−11 1.4× 10−8

90 1.1× 10−11 7.8× 10−9

100 7.9× 10−12 5.9× 10−9

First we focus on a harmonic oscillator potentialU(Q) = Q2/2. SinceU is a
polynomial of second order, the equations for the Wigner function are also of second order.
The Wigner function of an energy eigenstate is analytically known [14] for this potential.
Therefore we are able to calculate exactly the errors of our approximation†. In figure 1 we
show the Wigner function of the 11th energy eigenstate together with the contour lines of
9(Q,P ). Table 1 gives the mean and maximal absolute errors of our approximation of
the Wigner function withE = 11.5. The data indicate that the errors rapidly decrease with
increasing numberNx = Ny of Chebyshev polynomials. ForNx = Ny = 100, we achieve
an error of order 10−12 which is in the range of the machine precision.

The second application of our method is the Morse oscillator potential [14]

U(Q) = 1
2λ(1− e−Q/

√
λ)2 (11)

where the parameterλ gives a measure for the number of bound states. To obtain satisfactory
results for this potential we have to include higher-order terms of equations (3) and (4). To
obtain a reference solution of high accuracy we use the known analytic expression for the

† In order to compare our approximation with the exact solution we evaluate our spectral solution on an equidistant
grid consisting of 100×100 points. At each grid point we calculate the absolute difference between the approximate
and the exact solution. The mean value of these differences we call mean absolute value and their maximum we
call maximal absolute error.
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Figure 2. Exact Wigner Function (top) and approximations (middle and bottom) of the first
excited energy eigenstate of the Morse oscillator potential. The potential with the energy level of
the energy eigenstate and the corresponding position probability distribution is shown projected
on the left-hand wall. Below the three-dimensional representation of the Wigner function we
show its contour lines. The heavier contour lines denote the zero level, the light contours denote
positive values in steps of 0.04, and the broken contours the negative values, respectively. For
both approximations we have chosenNx = Ny = 50 with maximum order of the derivatives
r = 4 (middle) andr = 7 (bottom).
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Figure 3. Approximations for the Wigner functions
of the second and third energy eigenstates of the
asymmetric double-well potential. The potential with
the energy levels of the energy eigenstates and the
square of the approximated position wavefunction of
each particular state are shown projected on the left-
hand wall for each energy eigenstate. The meaning
of the contour lines is the same as in figure 2.
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wavefunctions of the energy eigenstates and numerically perform the Fourier transform (1)
defining the Wigner function.

We investigate forλ = 4 the first excited state. Figure 2 shows the exact Wigner
function (top) and two approximations (middle and bottom). In both approximations we
choseNx = Ny = 50, but the orderr of the derivatives in equations (3) and (4) included
in the calculations differ. Therefore the two figures visualize the truncation error. In the
middle we haver = 4 which does not represent a satisfactory approximation for the Wigner
function. Indeed the mean truncation error is larger by a factor of 103 than the error of the
approximation on the bottom wherer = 7. The latter is a very good approximation with
a mean absolute error of 10−4. We can confirm this result by investigating the probability
distribution in position, that is the marginal distribution of the Wigner function with respect
toP . In figure 2 we have projected this distribution onto the left wall. When we compare the
numerical integrals of the approximated Wigner functions with the exact curve we observe
a large deviation forr = 4 and a good agreement forr = 7. Hence any scaling argument
of h̄ in the original equations as a justification to neglect higher-order terms leads in this
case to incorrect results.

Our last example addresses the potential†
U(Q) = 1

2Q
4+ 1

4Q
3− 7

2Q
2 (12)

which describes an asymmetric double well as illustrated on the left wall of figure 3.
In the foreground of this figure we present approximations for the corresponding Wigner
functions obtained by our method. Here we show the Wigner functions of the second and
the third excited energy eigenstate. By integrating the Wigner function overP we have
again computed the marginal distribution which is the square of the eigenfunctionsψE . Our
results are in good agreement with our numerical calculations of the eigenfunctions obtained
by applying the spectral method to equation (2). Since for this potential the Wigner function
is not known analytically, this comparison brings out most clearly the validity and qualitative
correctness of our solution.

To summarize, we have presented a novel approach for the direct computation of
the Wigner function from phase space. The numerical examples illustrate that our
approximations are of high accuracy for various potentials where a reference solution is
known. Moreover, in the asymmetric double-well potential where no such reference solution
exists a barrier is present for the lowly excited states. Here we face a situation where usual
semiclassical approaches [16] fail. In contrast our method generates a good approximation
for the Wigner function. Last but not least, our method is a valuable tool to solve any
differential equations of arbitrary high order or any similar system.

We thank R Baltin, M V Berry, J P Dahl, U Leonhardt, H Leschke, S Schneider, and
R Seydel for many fruitful discussions. This work was partially supported by the Deutsche
Forschungsgemeinschaft. MH is most grateful to the Studienstiftung des deutschen Volkes
for its continuous support.
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